Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(5): e2305191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37752759

RESUMO

Metal halide perovskite colloidal quantum wells (CQWs) hold great promise for modern photonics and optoelectronics. However, current studies focus on Ruddlesden-Popper (R-P) phase perovskite CQWs that contain bilayers of monovalent long-chain alkylamomoniums between the separated perovskite octahedra layers. The bilayers are packed back-to-back via weak van der Waals interaction, resulting in inferior charge carrier transport and easier decomposition of perovskite. This report first creates a new type of perovskite colloidal multiple QWs (CMQWs) in the form of Dion-Jacobson (D-J) structure by introducing an asymmetric diammonium cation. Furthermore, the phase distribution is optimized by the synergistic effect of valeric acid and zwitterionic lecithin, finally achieving pure deep-blue emission at 435 nm with narrow full width at half maximum. The diammonium layer in D-J perovskite CMQWs features extremely short width of only ≈0.6 nm, thereby contributing to more effective charge carrier transport and higher stability. Through the continuous photoluminescence (PL) measurement and corresponding theoretical calculation, the higher stability of D-J perovskite CMQWs than that of R-P structural CMQWs is confirmed. This work reveals the inherent superior stability of D-J structural CMQWs, which opens a new direction for fabricating stable perovskite optoelectronics.

2.
Colloids Surf B Biointerfaces ; 220: 112869, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244132

RESUMO

Recently, red emissive carbon dots (R-CDs) have drawn widespread attention on account of their desirable fluorescence properties and good biocompatibility. Despite great efforts, facile synthesis of R-CDs for cellular imaging remains challenging and the fluorescence mechanism of R-CDs is still elusive. Herein, p-phenylenediamine-derived R-CDs with excitation-independency were successfully obtained through a facile solvothermal approach together with proportional precipitation. The fluorescent solvatochromism of R-CDs is realized, while high polarity leads to higher degree of dipole interaction between R-CDs and different solvents, favoring for emissive red-shift. Furthermore, density functional theory is adopted to explore the optical and electronic characteristics of some polycyclic aromatic molecules. Among different configurations, pyridine nitrogen and carbonyl bonds could relatively increase the charge density and significantly narrow the band gap, which can provide a crucial theoretical basis for the precise preparation of R-CDs. Moreover, R-CDs possess favorable cellular imaging ability, which indicates their potential for a promising candidate as fluorescence probes in bioimaging.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Espectrometria de Fluorescência , Nitrogênio , Solventes/química , Corantes Fluorescentes/química
3.
Small ; 18(15): e2108120, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253372

RESUMO

InP quantum dots (QDs) have attracted much attention owing to their nontoxic properties and shown great potential in optoelectronic applications. Due to the surface defects and lattice mismatch, the interfacial structure of InP/ZnS QDs plays a significant role in their performance. Herein, the formation of In-S and Sx -In-P1-x interlayers through anion exchange at the shell-growth stage is revealed. More importantly, it is proposed that the composition of interface is dependent on the synergistic effect of halogen ions and shelling temperature. High shelling temperature contributes to the optical performance improvement resulting from the formation of interlayers, besides the thicker ZnS shell. Moreover, the effect relates to the halogen ions where I- presents more obvious enhancement than Br- and Cl- , owing to their different ability to coordinate with In dangling bonds, which are inclined to form In-S and Sx -In-P1-x bonds. Further, the anion exchange under I- -rich environment causes a blue-shift of emission wavelength with shelling temperature increasing, unobserved in a Cl- - or Br- -rich environment. It contributes to the preparation of highly efficient blue emissive InP/ZnS QDs with emission wavelength of 473 nm, photoluminescence quantum yield of ≈50% and full width at half maximum of 47 nm.


Assuntos
Pontos Quânticos , Halogênios , Pontos Quânticos/química , Sulfetos/química , Temperatura , Compostos de Zinco
4.
Small ; 18(1): e2103527, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34713966

RESUMO

Metal halide perovskite nanostructures have sparked intense research interest due to their excellent optical properties. In recent years, although the green and red perovskite light-emitting diodes (PeLEDs) have achieved a significant breakthrough with the external quantum efficiency exceeding 20%, the blue PeLEDs still suffer from inferior performance. Previous reviews about blue PeLEDs focus more on 2D/quasi-2D or 3D perovskite materials. To develop more stable and efficient blue PeLEDs, a systematic review of blue perovskite quantum dots (PQDs) is urgently demanded to clarify how PQDs evolve. In this review, the recent advances in blue PQDs involving mixed-halide, quantum-confined all-bromide, metal-doped and lead-free PQDs as well as their applications in PeLEDs are highlighted. Although several excellent PeLEDs based on these PQDs have been demonstrated, there are still many problems to be solved. A deep insight into the advantages and disadvantages of these four types of blue-emitting PQDs is provided. Then, their respective potential and issues for blue PeLEDs have been discussed. Finally, the challenges and outlook for efficient and stable blue PeLEDs based on PQDs are addressed.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947720

RESUMO

Luminescent copper nanoclusters (Cu NCs) have shown great potential in light-emitting devices (LEDs), chemical sensing, catalysis and biological fields. However, their practical use has been restricted by poor stability, and study on the stability of Cu NCs solid powder along with the mechanism is absent. In this study, stablized Cu NCs powder was first obtained by cation crosslinking method. Compared with the powder synthesized by solvent precipitation method, the stability of Cu NCs powder crosslinked by ionic inducer Ce3+ was enhanced around 100-fold. The storage time when the fluorescence intensity decreased to 85% (T85) was improved from 2 h to 216 h, which is the longest so far. The results of characterizations indicated that the aggregation structure was formed by the binding of Ce3+ with the capping ligands of Cu NCs, which helped in obtaining Ce-Cu NCs powder from aggregate precipitation in solution. Furthermore, this compact structure could avoid the destruction of ambient moisture resulting in long-lasting fluorescence and almost unchanged physical form. This demonstrated that phosphor, with excellent characteristics of unsophisticated synthesis, easy preservation and stable fluorescence, showed great potential in light sources, display technology and especially in latent fingerprints visualization on different substrates for forensic science.

6.
Talanta ; 221: 121621, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076149

RESUMO

The profiling of bacterial metabolism is of great significance in practical applications. Therefore, the development of ultrasensitive and highly selective probe for bacterial metabolism detection and imaging is extremely desirable. Herein, a novel dual-emission pH-response bacterial metabolism detection and imaging probe is successfully developed. This probe consists of large-sized and easily separated SiO2 microspheres, copper nanoclusters (Cu NCs) with red emission, and carbon dots (CDs) with blue emission through in-situ self-assembly. In this system, the fluorescence of Cu NCs is sensitive to pH change due to their obvious aggregation-induced emission enhancement (AIEE) property, while the blue fluorescence of CDs remained almost stable. Therefore, red fluorescence and blue fluorescence are compounded with different fluorescence intensity at different pH values, and their fluorescence ratio is also different. By observation of composite fluorescence color, the visual colorimetric pH detection can be realized with the change of pH value of 0.2 units. Utilizing this system, we are able to detect bacterial metabolism with high signal-to-noise ratio, and it can also be used for bacterial metabolic imaging. Therefore, the pH-responsive Cu NCs-based dual-emission ratiometric fluorescent probe we constructed can provide new ideas for bacterial detection, antimicrobial sterilization, and biological imaging.


Assuntos
Cobre , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Dióxido de Silício , Espectrometria de Fluorescência
7.
Mikrochim Acta ; 187(12): 666, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206253

RESUMO

Dipicolinic acid (DPA) is employed as a significant biomarker to detect Bacillus anthracis, which can do serious damages to the health of human beings. Hence, it is crucial to develop a fast and highly efficient strategy for DPA monitoring. In this work, based on silicon nanoparticles (Si NPs) and terbium metal-organic frameworks (Tb-MOFs), a hybrid structure (Si NPs/Tb-MOFs) as a novel dual-emitting fluorescence probe was fabricated for ratiometric detection of DPA, where blue light-emitting Si NPs (Ex: 280 nm; Em: 422 nm) are encapsulated into green light-emitting Tb-MOFs (Ex: 280 nm; Em: 547 nm). The optical properties and chemical composition of the as-obtained Si NPs/Tb-MOFs were characterized in detail. The Si NPs/Tb-MOFs probe not merely possesses the merits of a facile synthesis method but also is an excellent fluorescence probe. The response time towards DPA is less than 30 s, revealing that the process of detecting DPA can be completed in such a short time. The limit of detection for DPA is 5.3 nM, which is four orders of magnitude lower than an infectious dosage of anthrax spores for human beings (60 µM). This dual-emitting Si NPs/Tb-MOFs probe with interference-free and self-calibrating properties may be a potential candidate for further development in medical diagnosis. Graphical abstract.


Assuntos
Estruturas Metalorgânicas/química , Nanopartículas/química , Ácidos Picolínicos/análise , Silício/química , Espectrometria de Fluorescência/métodos , Esporos Bacterianos/metabolismo , Bacillus anthracis/fisiologia , Biomarcadores/análise , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Térbio/química
8.
Mikrochim Acta ; 186(4): 258, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30915575

RESUMO

A series of dual-emission fluorescent probes was prepared from copper nanoclusters (Cu NCs) and carbon dots (CDs). They show two emission peaks (blue at 469 nm and red at 622 nm) when photoexcited at 365 nm. Upon exposure to sulfide, the Cu NCs will be deteriorated because they react with sulfide to form CuS. This results in the quenching of the red fluorescence of the Cu NCs, while the blue fluorescence of the CDs remains constant. Thus, the color of the nanocomposite changes from red to blue. The ratio of the fluorescences at the two wavelengths decreases linearly in the 2-10 ppb (26-128 nM) sulfide concentration range, and the limit of detection is 0.33 ppb (4.3 nM). The nanocomposite also was placed in an agar gel and then incorporated into a paper strip for fluorometric monitoring of gaseous hydrogen sulfide. Graphical abstract Schematic presentation of the synthesis of Cu NCs (copper nanoclusters)-CDs (carbon dots) dual-emission nano-assembly, Cu NCs-CDs-agar fluorescent film and their application for the detection of sulfide and H2S.

9.
Nanoscale Adv ; 1(4): 1413-1420, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132618

RESUMO

The development of full-color/white carbon-dot-based light-emitting diodes (LEDs) has been achieved, which show promising applications in full-color and flexible displays, backlights, and novel lighting sources. The gram-level synthesis of these full-color carbon dots (CDs) from citric acid by controlling the temperature has been achieved. By increasing the temperature from 120 to 180 °C, two, four, and six light-emitting CDs can be obtained, for which the emission wavelength shifts from 440 to 585 nm. This result reveals that temperature has a huge impact on the evolution of surface states, that is, increasing the temperature brings about enhanced surface functionalization and passivation, resulting in a red shift of the emission wavelength and enhancement of quantum yield. Then, full-color CDs/polymer composite phosphors are fabricated for efficient phosphor-based LED devices with quench-resistant solid-state fluorescence. By regulating the proportion of various CDs/polymer phosphors, white LEDs are realized with Commission Internationale de L'Eclairage coordinates of (0.32, 0.33) and a color rendering index of 82.7. The as-prepared CD-based full/white color LEDs can prove to be promising candidates for alternative light sources.

10.
Nanoscale ; 10(46): 21809-21817, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30457150

RESUMO

Fluorescence-based nanothermometers have potential to offer accuracy in the measurement of temperature using non-contact approaches. Herein, a C-dot/C-dot based dual-emission temperature sensing platform is fabricated through the electrostatic self-assembly of two kinds of fluorescent CDs with opposite charges. This dual-emission platform consists of several nearly-spherical CDs with two emission centers in blue (440 nm) and orange (590 nm) regions. The orange fluorescence exhibits discernible response to external temperatures in the range of ∼15 to 85 °C; on the other hand, the blue fluorescence remains nearly constant. A continuous fluorescence color change in response to temperature from orange to blue can be clearly observed by the naked eye. Thus, the as-prepared C-dot based dual-emission nanospheres can be used for optical thermometry with high reproducibility and sensitivity (0.93%/°C). Detailed characterization shows that temperature (in the 15-85 °C window) impacts the surface states of orange emissive CDs, leaving the blue emissive CDs unaffected. A model is proposed to explain the observations. Finally, by taking advantage of the excellent biocompatibility and stability, the CD based fluorescent nanothermometer is successfully used for the visual measurement of intracellular temperature variations.


Assuntos
Carbono/química , Nanosferas , Pontos Quânticos/química , Termometria , Animais , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Cor , Concentração de Íons de Hidrogênio , Camundongos , Microscopia de Fluorescência , Concentração Osmolar , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Temperatura
11.
J Colloid Interface Sci ; 521: 33-41, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29549763

RESUMO

Nitrogen doping can effectly adjust the compositions and structures of carbon dots and hence enhance their fluorescence. In this work, we report a fast and low-cost route for synthesis of nitrogen-doped carbon dots (N-CDs) by microwave pyrolysis of citric acid and ammonium within 7 min. The as-prepared N-CDs contain plentiful oxygen and nitrogen functional groups, and dispaly intense fluorescence with high quantum yield of ca. 44.3% and have an average size of 1.8 nm. The obtained N-CDs exhibit highly stable against photobleaching, ionic strengths, and can be used for selective and sensitive detection of Fe(III). It is postulated that the Fe3+-mediated fluorescence quenching is attributed to the charge transfer between N-CDs and Fe3+. In particular, the emission peaks from blue to red region can be tuned by interparticle distance of N-CDs, simply by increasing the concentration of N-CDs in aqueous solution, which indicates its potential applications as a promising optical image probe in multicolor cellular imaging.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Ferro/análise , Nitrogênio/química , Pontos Quânticos/química , Técnicas Biossensoriais , Cor , Células HeLa , Humanos , Microscopia Confocal , Micro-Ondas , Imagem Óptica , Oxigênio/química , Tamanho da Partícula , Espectrometria de Fluorescência , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...